

SCIENCES DE L'INGENIEUR

Séquence 9 – Activité 3

Accélération et consommation

Durée : 02H00

La conduite en ville nécessite de nombreuses variations de vitesse. Feux, stops, passages piétons, il faut bien souvent s'arrêter pour ensuite redémarrer.

Par ailleurs, la réglementation fixe la vitesse maximale en agglomération à 50 km/h (sauf indication contraire spécifique).

On se propose dans cette activité d'évaluer la différence en termes de consommation d'énergie entre trois types de conduite :

Figure 1 : voiture en mouvement

- → Accélération très faible : passage de 0 à 50 km/h en 30 s,
- → Accélération moyenne : passage de 0 à 50 km/h en 10 s,
- → Accélération forte : passage de 0 à 50 km/h en 5 s,

Données et hypothèses pour l'étude à mener

- ightarrow La route est considérée en ligne droite, horizontale selon l'axe $\overset{
 ightarrow}{z}$.
- → La résistance de l'air sera considérée.
- → L'écoulement de l'air sur la voiture est en régime turbulent.

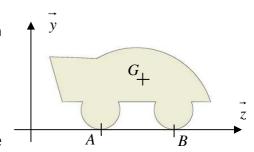


Figure 2 : modèle

- ightarrow Le problème est plan.
- \rightarrow Les liaisons « roue/sol » en A et B sont assimilées à des ponctuelles.
- \rightarrow Masse volumique de l'air : $\rho_{air} = 1.2 \text{ kg} \cdot \text{m}^{-3}$
- → L'évaluation portera sur une période de un an, à raison de 30 minutes par jour de roulage intra urbain auxquelles on associe 22 cycles « arrêt / démarrage / montée en vitesse jusqu'à 50 km/h ».

Caractéristiques de la voiture :

- → Surface maître-couple : $S = 2.2 m^2$
- \rightarrow Coefficient de pénétration dans l'air : $C_x = 0.35$

PARTIE A

Les avantages d'une conduite souple

Q1 – Outre un gain possible d'énergie (on verra cela dans la suite), citer les avantages à rouler « calmement				
en ville.				

PARTIE B

Appropriation du modèle

Q2 – D'après les hypothèses, le problème est plan. Selon la figure 2, le plan de l'étude est :

$$\Box (x, y)$$

$$\Box \left(\overrightarrow{y}, \overrightarrow{z} \right)$$

$$\Box (\vec{x}, \vec{z})$$

Q3 – Placer <u>en rouge</u> sur la figure 2 :

- Le vecteur-force \overrightarrow{P} correspondant au poids propre de la voiture,
- Les actions du sol sur la voiture en A et B : \overrightarrow{A} et \overrightarrow{B} ,
- La force motrice \overrightarrow{F} ,
- La résistance de l'air \overrightarrow{R} ,

Q4 – Établir en unités SI la relation donnant la résistance de l'air en fonction de la vitesse : R = R(v)

$$R = \frac{1}{2} \cdot \rho_{air} \cdot S \cdot C_x \cdot v^2 = \frac{1}{2} \times 1,2 \times 2,2 \times 0,35 \times v^2 = 0,462 \cdot v^2$$

PARTIE C

Finalisation du modèle numérique sous Inventor

Sur PC, sous Inventor...

- Ouvrir l'assemblage « Situation de base.iam ».
- Suivre le menu « Afficher >> Style visuel >> Ombré avec arêtes ».
- ▶ Passer en simulation dynamique.
- Dans le lecteur de simulation, régler la <u>durée</u> à 30 s et le <u>nombre de calculs</u> à 250.

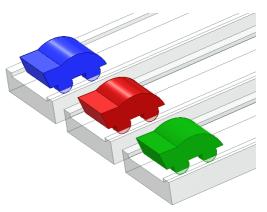


Figure 3 : modèle numérique

Les forces correspondant à la résistance de l'air ont déjà été placées pour les voitures verte et rouge.

Arr Placer la force d'intensité R = R(v), sur le milieu de l'arête avant de la voiture bleue, dans la direction du déplacement et de sens opposé.

Attention : l'intensité dépend de v et non de t ; il faudra faire un « changement de référence ».

Le dossier « Liaisons standards » contient les glissières des mouvements de translation des voitures par rapport à la route. Plutôt que d'imposer une force motrice générant la prise de vitesse voulue dans le délai voulu, on fait le choix d'imposer directement les lois de vitesse désirées (comprendre ici qu'on pourrait faire autrement...).

▶ Pour chaque voiture, imposer la loi de vitesse qui lui correspond :

Accélération moyenne : voiture **ROUGE** : passage de 0 à 50 km/h en 10 s,

Accélération très faible : voiture **VERTE** : passage de 0 à 50 km/h en 30 s,

Accélération forte : voiture **BLEUE** : passage de 0 à 50 km/h en 5 s,

> Lancer la simulation et vérifier la bonne prise en compte des lois de vitesse (figure 4).

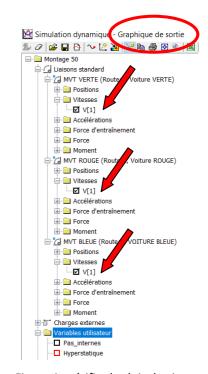


Figure 4 : vérifier les lois de vitesse

PARTIE D

Recherche des consommations de carburant liées à la résistance de l'air

Seule la consommation de carburant résultant de la résistance de l'air sera considérée. Les autres sources de consommation (frottements internes des organes mécaniques, etc.) sont supposés constants et égaux quels que soient les types de conduite (accélération faible, moyenne ou forte).

7	Créer	trois	« variables	utilisateur »	(figure	5)	donnant	en	Ĵ
ľéi	nergie	dissip	ée par les ré	sistances de l	'air.				

- Utiliser le travail d'une force...
- Lancer la simulation et observer les courbes des énergies.



Figure 5 : calcul des énergies

Il pourrait maintenant s'agit de voir qui consomme le plus, mais on va voir que ce n'est pas si simple ; il y a quelques subtilités et raffinement à considérer...

Q5 – Compléter le tableau suivant.

	Date t_{50} à laquelle les 50 km/h	Distance parcourue à la date	Énergie consommée à la
Voiture	sont atteints	t_{50}	date t_{50}
	(s)	(m)	(J)
VERTE			
ROUGE			
BLEUE			

Q6 – Montrer que ce tableau ne permet pas de comparer grand chose.						

Q7 – Compléter le tableau suivant.

Voiture	Date $t_{208 m}$ à laquelle les 208 m sont parcourus (s)	Énergie consommée à la date t_{208m} $ig(Jig)$
VERTE		
ROUGE		
BLEUE		

BLEUE			
	yser et commenter ce tableau ; en déduire que les nalyse comparative souhaitée.	informations mises en jeu sont insuffisantes por	ur
On donne	les consommations spécifiques du véhicule :		
	$ ightarrow$ A la vitesse constante de 50 km/h : $c_{\it 50}$ = 4,2 l · $ ightarrow$ En phase d'accélération faible : $c_{\it acc\ faible}$ = 4,6 l		
	$ ightarrow$ En phase d'accélération moyenne : $c_{\it acc\ moyenne}$ =	$=6,3 l \cdot 100 \ km^{-1}$	
	$ ightarrow$ En phase d'accélération forte : $c_{\it acc\ forte}$ = 11,4 l	$\cdot 100 \text{ km}^{-1}$	
	uler la quantité de gasoil consommée sur la distar on (voiture verte).	nce parcourue de 208 m pour le cas d'une faib	le

Q10 – Calculer la quantité de gasoil consommée sur la distance parcourue de 208	3 m po	ur le	cas o	d'une
accélération moyenne (voiture rouge).				
Q11 – Calculer la quantité de gasoil consommée sur la distance parcourue de 208	3 m po	ur le	cas o	d'une
accélération forte (voiture bleue).				
Q12 – Calculer en % le surplus de consommation qu'engendrent les accélérations	moyen	ne et	force	e par
rapport à une accélération faible.				

PARTIE E

Économie de CO₂ - Climat

Les chiffres précédents montrent qu'une conduite douce consomme moins de carburant et donc, on s'en doute, génère moins de pollution comme les particules fines ou encore le CO_2 qui va nous intéresser ici. Dans cette dernière partie, nous allons chercher à déterminer l'économie annuelle de CO_2 qu'engendre une conduite souple par rapport à une conduite sportive (accélération forte).

L'étude des variations de vitesse et de leur conséquence a du sens sur des trajets urbains, en agglomération et non sur des trajets « lonque distance » pour lesquels on est plutôt à vitesse constante (sur route nationale ou autoroute par exemple). Aussi, on considère une personne réalisant quotidiennement 30 minutes de circulation intra urbaine. Ce trajet implique 18 « stop & go », c'est-à-dire des passages de 0 à 50 km/h. On précise que 1 litre de diesel pèse 835 grammes. Le diesel est composé à 86.2% de carbone (C), ce qui correspond à 720 g de C par litre de diesel. Pour brûler ce C en CO₂, 1920 g d'oxygène sont nécessaires. La somme nous donne donc 720 + 1920 = 2640 g de CO_2 par litre de diesel. Q13 – Calculer en kgCO₂ la quantité annuelles de CO₂ non émise en envisageant des accélérations faibles plutôt que fortes. Q14 – Conclure en considérant des éléments du tableau figure 6 et la réponse à la Q1.

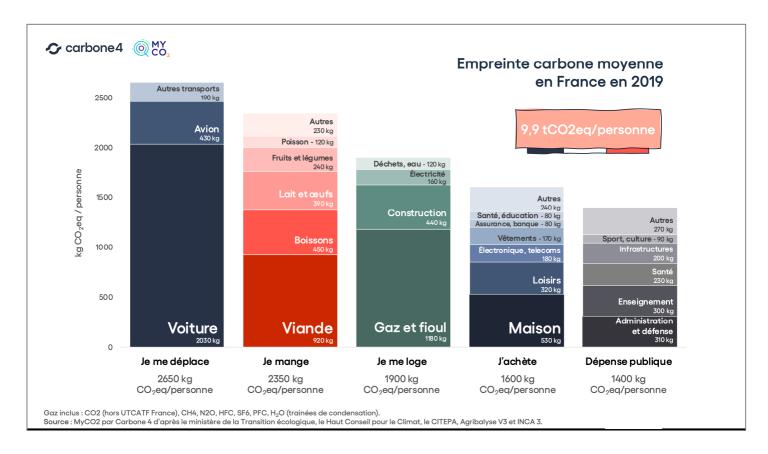


Figure 6 : empreinte carbone moyenne en France en 2019

Liens utiles:

Postes d'émission deGES, France : https://www.carbone4.com/myco2-empreinte-moyenne-evolution-methodo

 $Emission \ de \ CO2, \ moteur \ diesel: \ {\tt https://ecoscore.be/fr/info/ecoscore/co2?path=info%2Fecoscore%2Fco2#:::text=1\%20litre%20de%20diesel%20p%C3%A8se,2\%20par%20litre%20de%20diesel%20pmC3%A8se,2\%20par%20litre%20de%20diesel%20par%20p$

Etude intéressante : http://weber.fi.eu.org/consommation/

SNBC: https://www.ecologie.gouv.fr/strategie-nationale-bas-carbone-snbc